Effects of Aminoacids and Carnitin On Cardiovascular Diseases

Authors

  • Ezhar Ersöz

DOI:

https://doi.org/10.5281/zenodo.10905686

Keywords:

Cardiovascular Diseases, Metabolites, Amino Acid, L-Carnitine

Abstract

Cardiovascular diseases are accompanied by disturbances in cardiac metabolism.  Evaluation of metabolomics will enable us to learn more about the pathophysiological interactions of metabolites and disease states. Metabolomics is the detection, quantification and identification of small molecule metabolites consisting of lipids, carbohydrates, vitamins, hormones and other cell components in tissues, cells and physiological fluids for a certain period of time with the help of high additive technologies. Products such as micro molecules, peptides, oligonucleotides, sugars, nucleosides, organic acids, ketones, aldehydes, amines, amino acids, lipids, steroids, alkaloids are metabolites. Physiological amino acid concentrations depend on the functions of organs and pathological conditions may cause differences in metabolism. L-Carnitine, which also has antioxidant properties, is an amino acid derivative involved in the mitochondrial transfer of long-chain fatty acids and has important roles in lipid metabolism. This review summarises the current knowledge, perspectives and limitations of amino acids and carnitine in the diagnosis, prognosis and treatment of cardiovascular diseases such as heart failure, atherosclerosis, ischaemic and non-ischaemic cardiomyopathy

References

Van Bilsen M, Van Nieuwenhoven FA, Van der Vusse GJ. Metabolic remodelling of the failing heart: beneficial or detrimental?. Cardiovasc Res. 2009; 15; 81(3):420-8.

Smith CS, Bottomley PA, Schulman SP, Gerstenblith G, Weiss RG. Altered creatine kinase adenosine triphosphate kinetics in failing hypertrophic human myocardium. Circulation. 2006; 114(11): 1151-8.

Nascimben L, Ingwall JS, Pauletto P. Creatine kinase system in failing and non-failing human myocardium. Circulation. 1996; 94(8):1894-901.

Griffiths WJ, Koal T, Wang Y, Kohl M, Enot DP, Deigner HP. Targeted metabolomics for biomarker discovery. Angewandte Chemie Int Ed Engl. 2010; 49(32):5426–45.

Maisel AS, Krishnaswamy P, Nowak RM, James McCord MBA, Hollander JE, Duc P,et.al. "Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure". N Engl J Med 2002; 347: 161-7.

He Q, Yin Y, Zhao F, Kong X, Wu G, Ren P. Metabonomics and its role in amino acid nutrition research. Front Biosci Symbology. 2011; 16(26): 2451-60.

Kim SW, Mateo RD, Yin YL, Wu G. Functional amino acids and fatty acids for improving production performance of sows and piglets. Asian Australian J Anim. 2007; 20(2): 295-306.

Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids. 2009; 37 (1): 1 –17

Zhang ZY, Monleon D, Verhamme P and Staessen JA. Branched Chain Amino Acids as Critical Keys in Health and Disease. Hypertension. 2018; 72(5): 1012-22.

Ruiz-Canela M, Toledo E, Clish CB, Hruby A, Liang L, Salas-Salvadó J, et al. Plasma branched-chain amino acids and incident cardiovascular disease in a predimed trial. Clin. Chem. 2016; 62(4): 582-92.

Floyd JC Jr, Fajans SS, Conn JW, Knopf RF, Rull J. Stimulation of insulin secretion by amino acids. J Clin Invest. 1966; 45:1487-1502.

A Ignatowski. The effect of animal foods on the organs of rabbits Izvest Imper Voennomed Akad St. Petersburg.1908; 16: 154 - 173

Weissberg PL, Bennett MR. Atherosclerosis - an inflammatory disease. N Engl J Med.1999; 340(24): 1928-9.

DiNicolantonio JJ, Lavie CJ, H. Fares AR, Menezes JH, O'Keefe. L-Carnitine in the secondary prevention of cardiovascular disease: systematic review and meta-analysis. Mayo Clin. Proc. 2013; 88 (6): 544–51.

Eckel RH, Alberti KG, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2010; 375 (9710): 181–3.

Lloyd SG, Wang P, Zeng H, Chatham JC. Impact of low-flow ischemia on substrate oxidation and glycolysis in the isolated perfused rat heart. Am J Physiol Heart Circ Physiol. 2004; 287(1): H351-62.

Coşkun Ö, Öter ŞK. Genel Bilgiler ve Egzersiz ile İlişkisi; Fizyolojik ve Morfolojik etkileri. Eğitimde-Bilimde-Haberde Sağlık. 2001; 3(1): 11-22.

Roberts LD, Gerszten RE. Toward new biomarkers of cardiometabolic diseases. Cell Metab. 2013; 18(1): 43-50.

Doehner W, Frenneaux M, Anker SD. Metabolic impairment in heart failure: myocardial and systemic perspective. J Am Coll Cardiol. 2014; 64(13): 1388-400.

Vardeny O., Gupta DK, Claggett B, Burke S, Shah A, Loehr L. Insulin resistance and incident heart failure ARIC study (Atherosclerosis Risk in Communities). J Am Coll Cardiol HF. 2013; 1: 531-6.

Shah SH, Kraus WE, Newgard CB. Metabolomic profiling for to identification novel biomarkers and mechanisms related to common cardiovascular diseases: form and function. Circulation. 2012; 126(9):1110-20.

Cheng ML, Wang CH, Shiao MS, Liu MH, Huang YY, Huang CY et.al. Metabolic disorders identified in plasma are associated with outcomes in patients with heart failure: Diagnostic and prognostic value of metabolomics. J Am Coll Cardiol. 2015; 65(15):1509-20.

Shah SH, Bain JR, Muehlbauer MJ, Stevens RD, Crosslin DR, Haynes C, et. al. Association of peripheral blood metabolic profile with risk of coronary artery disease and subsequent cardiovascular events, Circ Cardiovascular Genet. 2010; 3(2): 207-14.

Mudge GH Jr, Mills RM Jr, Taegtmeyer H, Gorlin R, Lesch M. Alterations of myocardial amino acid metabolism in chronic ischemic heart disease. J Clin Invest. 1976; 58(5):1185-92.

Liu Z, Vuohelainen V, Tarkka M, Tenhunen J, Lappalainen RS, Narkilahti S, et.al. Glutamate release predicts ongoing myocardial ischemia of rat hearts. Scand J Clin Lab Invest. 2010; 70(3): 217-24

Wang J, Li Z, Chen J, Zhao H, Luo L, Chen C, et al. Metabolomic identification of diagnostic plasma biomarkers in humans with chronic heart failure. Mol Biosyst. 2013; 9(11): 2618-26

Soares MS, Oliveira PS, Debom GN, da Silveira Mattos B, Polachini CR, Baldissarelli J, et.al. Chronic administration of methionine and/or methionine sulfoxide alters oxidative stress parameters and ALA-D activity in liver and kidney of young rats. Amino Acids. 2017; 49(1): 129-138.

Stefanello FM, Kreutz F, Scherer EBS, Breier AC, Vianna LP, Trindade VMT, et.al. Reduction of gangliosides, phospholipids and cholesterol content in the cerebral cortex of rats induced by chronic hypermethioninemia. Int J Dev Neurosci. 2007; 25(7): 473-77.

Hidiroglou N, Gilani GS, Long L, Zhao X, Madere R, Cockell K, et.al. Effect of dietary vitamin E, fat and methionine on blood cholesterol profile, homocysteine levels and oxidizability of low-density lipoprotein in the gerbil. J Nutr Biochem. 2004; 15(12): 730-40.

Iliceto S, Scrutinio D, Bruzzi P, D'Ambrosio G, Boni L, Di Biase M, et.al. Effects of L-carnitine administration on left ventricular remodeling after acute anterior myocardial infarction: the L-Carnitine Ecocardiografia Digitalizzata Infarto Miocardico (CEDIM) Trial. J Am Coll Cardiol. 1995; 26(2): 380–87.

Ruiz-Canela M, Toledo E, Clish CB, Hruby A, Liang L, Salas-Salvadó J, et. al. Plasma branched-chain amino acids and incident cardiovascular disease in a preliminary trial. Clin. Chem. 2016; 62(4): 582-92.

Bloomgarden ZT. Obesity, hypertension, and insulin resistance, Diabetes Care. 2002; 25 (11): 2088–97.

Published

31.03.2024

How to Cite

Ersöz, E. (2024). Effects of Aminoacids and Carnitin On Cardiovascular Diseases. MEHES JOURNAL, 2(1), 25–31. https://doi.org/10.5281/zenodo.10905686

Issue

Section

Review Articles